Offshore Wind Summit

September 25, 30, and October 7, 2020

National Governors Association Center for Best Practices & The Embassy of Denmark

Electricity Market Structure & Transmission Grids- Introductory Remarks

Jessica Rackley, Energy & Environment Program Director, NGA Center for Best Practices

Thank You to our Sponsors

OrstedSIEMENS Gamesa

RENEWABLE ENERGY

Opening Remarks

Ralph Northam, Governor, Commonwealth of Virginia

Our members make wind energy work

Wind the cheapest form of new power generation

Offshore wind has developed individually in each country

Annual Installed Capacity (MW)

Poland is now the hottest market

10.6 GW pipeline POLAND Baltic Sea Baltic Sea

Figure 7 Location of planned wind farms in the Polish part of the Baltic Sea

A journey to gain experience

Maritime Spatial Planning Ecosystem Member States and third Based approach Best available countries cooperation data Land sea interactions Involvement of stakeholders Integrated coastal management EUROPE

Maritime Spatial Planning

Why is it important?

Reduce conflicts on access to maritime space

Reduce cumulative environmental impacts

Reduce coordination costs

Improve visibility for private investments

2011 Implementation timeline **EU** Directive 2014 2016 2021 on MSP Draft MSPs 6-year September Set up authority MSP in each Member Stakeholder meetings and review Entry into State consultations process force

Who's responsible where?

Source: WindEurope

Offshore grid connections Different configurations, different costs

Source: WindEurope

Cost of offshore wind is decreasing

Source: WindEurope February 2020

Delivering high volumes requires auctions and Contracts for Difference (CfD)

The UK is now revising the transmission long term strategy

But the grid requires a new approach

Business as Usual

European Centralised Hubs (HUB)

European Distributed Hubs (EUR)

Much more coordinated

With private and public stakeholders

Hybrid projects and regional cooperation

- North Sea Energy Cooperation
- EE-LV 1GW joint project
- UK-NL Multipurpose interconnector
- Baltic SeaOffshore WindPact

Some lessons learned in offshore wind in Europe

Get your maritime spatial planning right

Beef up your permitting authorities

Accelerate grid development -on and offshore

EU regulatory framework for "cross border" projects

Electrify transport, heating and industry

6 EE

Visibility on volumes and revenues

NGA & Embassy of Denmark Offshore Wind Summit

Orsted

Kirsty TownsendHead of Special Projects
October 7, 2020

Ørsted Offshore: Global overview

25+ years of experience and unparalleled trackrecord

The global leader in offshore wind

- > **6.8 GW** installed capacity
- > 3.1 GW under construction
- > 1,500+ turbines spinning
- 26 offshore wind farms in operation

Overview

- Offshore wind represents the dawning of a new industry in the U.S.
- It has huge potential to achieve both economic and environmental goals
- There is no clear rulebook for how this new industry can and should develop
- Without arulebook, offshore windfaces several major challenges
- States and the federal government can set the stage for success

Offshore wind market on the East Coast

Potential for 25+GW

Ørsted U.S. Offshore Wind portfolio

Awarded over 2,900 MW of offshore capacity on the East coast

In Operation

Block Island Wind Farm: 30MW

Awarded

Revolution Wind: 50/50 JV w/ Eversource, 704MW (400MW to RI, 304MW to CT)

South Fork Wind: 50/50 JV w/ Eversource, 132MW

Sunrise Wind: 50/50 JV w/ Eversource, 880MW

Ocean Wind: with the support of PSEG, 1,100MW

Skipjack Wind Farm: 120MW

Under Construction

Coastal Virginia Offshore Wind: EPC contract, 12MW demo project

Key Challenges **Orsted**

Key challenge: complex design & permitting uncertainties

- Offshore wind farms are complex
- Multi-year design & planning phases
 - Globally ~ 7-year average
- U.S. had to create a permitting regime from scratch
 - Multiple state and federal agencies
 - Enormous amount of uncertainty regarding costs and timelines

Key challenge: finding physical space to come ashore

- Power cables need to physically and electrically interconnect to land to serve customers
- On the U.S. East Coast:
 - High population density
 - High real estate costs
 - Difficult to find suitable space for substations and cable routing

Key challenge: finding electrical space to come ashore

- Power grid along the U.S. East Coast not designed to take large amounts of power from offshore
- Injecting offshore wind power can result in:
 - Congestion on transmission lines
 - Curtailment of clean power production
 - Hinders climate goals

Key challenge: finding electrical space to come ashore & wholesale markets

- Independent System Operators manage new generator interconnection process to maintain reliability
 - Slow and uncertain process
 - In ISO NE feasibility studies have a 90 timeline, but in Q2 2020 average completion time of 241 daysreported
 - Projects moving in and out of queue result in delays and changing interconnection cost estimates
- Growing conflicts between wholesale market design and state energy policies
 - Currently, only offshore wind ineligible for capacity market revenue in New York and PJM; and limited in New England

Key challenge: reducing impacts to coastal communities & the environment

- Agreements to help reduce impacts of cable landfall needed for costal communities
- Scientific research necessary to protect marine wildlife

Fisheries Outreach Resources

Fisheries Liaisons

Fisheries Representatives

Outreach — early and often

Input on projectlayout and design

Collaborative design

Solutions & Opportunities! **Orsted**

Solutions & opportunities: large-scale onshore power grid upgrades

- States should lead efforts to ensure the transmission grid is strong enough to support their offshore wind generation goals
 - Innovative cost sharing tools already exist (FERC Order 1000 Public Policy Transmission)
 - Some states, like NY, have been using this process to upgrade transmission to meet public policy goals

Solutions & opportunities: large-scale offshore power grid upgrades

- As space at points of interconnection become more limited, states should consider options for backbone transmission
- In order to avoid costly miscues that plagued the first European attempts the following will need to be addressed:
 - Develop revenue and risk allocation mechanisms to protect offshore wind developers from lost revenue in the event of backbone failures
 - Site backbone in locations that accommodate geographically diverse lease areas
 - Develop interconnection standards that can be factored into project design and cost in advance of project bids

Solutions & opportunities: explore new ways to procure offshore power

- As states move forward with their offshore wind goals, consider new procurement approaches
 - States, working with ISO/RTOs canidentify areas suitable to build offshore points of interconnection (POI)
 - These facilities could be procured and offshore wind developers could bid future projects to interconnect at sea, instead of on land
 - It is possible that a single offshore POI (or series of them) could serve multiple states, potentially saving onshore upgrade costs and reducing the cost for offshore wind

Solutions & opportunities: update wholesale market rules

- States should work together to ensure wholesale markets work for them
- Potential market reforms to help state's meet their clean energy goals include:
 - Removal of restrictions to revenues for offshore wind resources such as the PJM Minimum Offer Price Rule
 - Streamlining and fast-tracking interconnection review process for public policy generation and transmission projects
 - New cost allocation schemes for offshore wind interconnection upgrade costs
 - Revised interconnection queue and study processes to ensure timely studies and project deadlines

Conclusion

- The solutions to the offshore wind challenges are not simple
- It will take time and there will be growing pains along the way
- The time is now to start this journey so we can help the states reach their critically important clean energy goals
- States need a real partner in the federal government to help streamline permitting and manage new lease area auctions
- Ørsted can be a valuable partner for the government as we chart a new energy course together

Thankyou

Kirsty Townsend
Head of Special Projects
KIRTO@orsted.com

Panel Discussion on Electricity Market Structure & Transmission Grids

Moderator: Rob Gramlich, President - Grid Strategies

Panelists:

- Judy Chang, Undersecretary of Energy and Environmental Affairs -Massachusetts
- Mary Beth Tung, Director Maryland Energy Administration
- Al McBride, Director of Transmission Strategy and Services ISO New England

Conceptual Depiction of Offshore Interconnections: 8,000 MW

State Breakout Discussions on Electricity Market Structures & Transmission Grids

State Report Out

Summary & Closing

Summit Wrap-Up

General

COLLABORATION & COOPERATION. Vital across states and regions
LONG-TERM VISION. Investors respond best to long-term signals
COST DECLINES. LCOE reductions significantly greater than anyone expected
SUPPLY CHAIN & EMPLOYMENT. Renewable generation is a jobs machine

Stakeholders

ROLES & RESPONSIBILITIES. Clearly designated methodology and pathways **CLEAR PROCESS**. Clarity at the outset significantly helps stakeholder engagement **COMPREHENSIVE ENGAGEMENT**. All key stakeholder perspectives at the table

Ports & Infrastructure

MULTIPLE PORT OPTIONS. Different approaches fit different states
FINANCING. Leveraging public/private investment can be done in multiple ways
WATERFRONT VS. INLAND. Inland regions are a key part of the offshore supply chain

Electricity Markets & Transmission

BACKBONE VS. RADIAL. The decision between the two is not binary **OFFSHORE PLANNING**. It takes a LOT of time to plan, permit and build **POWER FLOWS FROM OFFSHORE**. Onshore grid was not built for offshore wind

